CASE and COALESCE

Perhaps the most commonly used function, which is classified as a system function, is CASE. There are two general uses of CASE. The first one is used to replace occurrences of one value with other values, as specified by the programmer. Syntax for this flavor of CASE is as follows:

SELECT column_name = CASE

WHEN column_name = 'a' THEN 'b'

...

ELSE 'c'

END
For instance, suppose that we want to specify the salary level for each job category within my publishing company. Using the pubs database, we could write the following query:

SELECT job_desc, salary_level =

CASE

WHEN job_desc = 'New Hire - Job Not Specified' THEN '25K'

WHEN job_desc = 'Chief Executive Officer' THEN '500K'

WHEN job_desc = 'Business Operations Manager' THEN '350K'

WHEN job_desc = 'Chief Financial Officier' THEN '400K'

WHEN job_desc = 'Publisher' THEN '75K'

WHEN job_desc = 'Managing Editor' THEN '65K'

WHEN job_desc = 'Marketing Manger' THEN '55K + commissions'

ELSE 'you get the idea'

END

FROM jobs
Results:

	job_desc
	salary_level

	New Hire—job not specified
	25K

	Chief Executive Officer
	500K

	Business Operations Manager
	350K

	Chief Financial Officer
	400K

	Publisher
	75K

	Managing Editor
	65K

	Marketing Manager
	You get the idea

	Public Relations Manager
	You get the idea

The other variation of CASE, which is sometimes referred to as the searched CASE, evaluates a Boolean expression and returns different values accordingly. For instance, we could use the searched CASE to categorize the price of titles as cheap, affordable, expensive, or unknown, as follows:

SELECT title_id, price, category= CASE

 WHEN price IS NULL THEN 'unknown'

 WHEN price < = 7 THEN 'cheap'

 WHEN price BETWEEN 7.1 AND 15 THEN 'affordable'

 ELSE 'expensive'

 END

FROM titles

Results:

	title_id
	price
	Category

	BU1032
	19.99
	Expensive

	BU1111
	11.95
	Affordable

	BU2075
	2.99
	Cheap

	BU7832
	19.99
	Expensive

	MC2222
	19.99
	Expensive

	MC3021
	2.99
	Cheap

	MC3026
	NULL
	Unknown

	PC1035
	22.95
	Expensive

	PC8888
	20
	Expensive

	PC9999
	NULL
	Unknown

	PS1372
	21.59
	Expensive

	PS2091
	10.95
	Affordable

	PS2106
	7
	Cheap

	PS3333
	19.99
	Expensive

	PS7777
	7.99
	Affordable

	TC3218
	20.95
	Expensive

	TC4203
	11.95
	Affordable

	TC7777
	14.99
	Affordable

The COALESCE function hardly qualifies as a system function because it doesn't retrieve any system information. COALESCE simply returns the first value out of a list that is not NULL. COALESCE is a powerful tool if you are returning numerous values to a user and want to substitute occurrences of NULL with values from a different column or with an expression.

For instance, suppose that we need to return a list of cities and states. If a publisher is located in a country that does not have a state, we'll substitute a NULL value with an expression:

SELECT

 city,

 COALESCE(state, 'no state specified') AS state

FROM publishers

Results:

	City
	State

	Boston
	MA

	Washington
	DC

	Berkeley
	CA

	Chicago
	IL

	Dallas
	TX

	München
	no state specified

	New York
	NY

	Paris
	no state specified

The only requirement of COALESCE is that all expressions in the list must have compatible data types. For instance, you can't coalesce DATETIME and INTEGER. Notice that the COALESCE function can accept multiple values.

ISNULL, NULLIF, and GETANSINULL

The ISNULL function is similar to COALESCE, but accepts only two parameters. The first parameter will be checked, and if NULL value is found, it will be replaced with the second parameter. Furthermore, ISNULL requires that both parameters have the same (not just similar) data type.

For instance, we can return 0 instead of NULL for titles that do not have any royalties associated with them, as follows:

SELECT

TOP 10

title_id,

ISNULL(royalty, 0) AS royalty

FROM titles

Results:

title_id royalty

-------- -----------

BU1032 10

BU1111 10

BU2075 24

BU7832 10

MC2222 12

MC3021 24

MC3026 0

PC1035 16

PC8888 10

PC9999 0

The NULLIF function returns a NULL value if the two parameters it accepts are equivalent. NULLIF can be thought of as an opposite of ISNULL; for instance, we could use NULLIF if we wanted to return NULLs whenever royalty is 10:

SELECT

TOP 10

 title_id,

 NULLIF(royalty, 10) AS royalty

FROM titles

Results:

title_id royalty

-------- -----------

BU1032 NULL

BU7832 NULL

MC2222 12

MC3021 24

MC3026 NULL

PC1035 16

The GETANSINULL function provides a quick way of checking whether column nullability is determined according to the ANSI 92 standard. (I have not found much use for this function; you can refer to online documentation if you want to learn more about GETANSINULL).

CAST and CONVERT

The CAST and CONVERT functions are very similar: Both translate a value from one data type to another. Although their performance is also similar, their syntax and potential usage is slightly different.

Both CAST and CONVERT have a straightforward syntax:

CAST(expression AS new_data_type)

CONVERT(new_data_type, expression, [style])

The expression must already have a data type that is translatable into the new_data_type. For instance, you can't convert an alphanumeric string into an integer.

NOTE
CONVERT has an optional parameter: style. This parameter is allowed only for cases when working with date and time values. SQL Server supports numerous formats for presenting date and time values; the style parameter is used to specify such format.

For example, suppose that we want to retrieve order dates from the sales table. However, we don't care about the time portion; all we need to know is the order date. We could use either CAST or CONVERT to do this, as in the following queries:

SELECT TOP 1 CAST(ord_date AS VARCHAR(12)) FROM sales

or

SELECT TOP 1 CONVERT(VARCHAR(12), ord_date, 109) FROM sales

Both return the same results:

Sep 14 1994

In this example, we retrieved a date value in its default format (on my server). In fact, CONVERT(VARCHAR(12), ord_date) would bring the same result. Now, suppose that we need a date value in which month, day, and year are separated by dashes. In such a case, we have no choice but to resort to CONVERT with the style 110:
SELECT TOP 1 CONVERT(VARCHAR, ord_date, 110) FROM sales

Results:

09-14-1994

IDENTITY- and GUID-Related Functions

The @@IDENTITY, IDENTITY, SCOPE_IDENTITY, IDENT_CURRENT(), and NEWID() functions deal with IDENTITIY values or globally unique identifiers.

The NEWID() function must be used if you want to provide a default value for a column with the UNIQUEIDENTIFIER data type. It returns a new GUID each time it is executed.

The IDENTITY function has a limited use; in rare cases, when you use SELECT…INTO syntax you can supply identity values for the newly created table using the IDENTITY function. For instance, suppose we want to add an identity column to the sales table (within a temporary table). We could use the following statement to copy all rows from sales table into #new_sales and add an identity column, all in one shot:

SELECT IDENTITY(INT, 1,1) AS sales_key, *

INTO #new_sales

FROM sales

The other three IDENTITY-related functions deserve more attention. You will often need to populate multiple related tables, perhaps within a single transaction. For instance, you could be populating the order and order_details tables in one transaction. If the order table has an identity column, you'll have to look up the identity value just inserted into the order table before you can add a related record in order_details. The @@IDENTITY, SCOPE_IDENTITY(), and IDENT_CURRENT() functions help you look up the last identity value inserted, but their behavior is slightly different from each other, as follows:
· @@IDENTITY returns the last IDENTITY value inserted on the current connection. Suppose that you have an INSERT trigger on the order table that populates the audit_trail table, which also has an IDENTITY column. In such a case, the @@IDENTITY function will return the last identity value inserted, which would be the identity inserted in the audit_trail table instead of the identity value added to the order table. Therefore, if you try populating order_details with a value returned by the @@IDENTITY function, your data integrity will be compromised.

· The IDENT_CURRENT() function accepts a table name as the parameter and returns the last identity value generated in that table by any connection. If you're trying to populate order_details with the last identity value inserted into the order table, you might think that IDENT_CURRENT('order') would suffice. Well, it would if you were the only user of the system, but it is possible that some other user might add a row to the order table a few milliseconds after you added the row to the same table. Therefore, using IDENT_CURRENT() in a multiuser system might also compromise your data integrity.

· The SCOPE_IDENTITY() function takes no parameters and returns the last identity value inserted within the current scope. What this means is that if an INSERT statement populating the order table fires a trigger and adds a row to the audit_trail table, SCOPE_IDENTITY() will return the last value added to the order table, whereas @@IDENTITY will return the last value added to audit_trail. These functions have appropriate uses, but they're often used incorrectly

USER- and HOST-Related Functions

The CURRENT_USER, SYSTEM_USER, USER_NAME(), and SESSION_USER functions return information about the current user of the system. The output of these functions is useful for enforcing security—you can allow reading or modifying certain data only to authorized users. These functions are also handy when you want to create an audit trail of data changes: Every time someone modifies the data, you can store the user name in the updated_by column, or perhaps even insert a row in the audit tail table.

CURRENT_USER, SESSION_USER and USER_NAME() are equivalent—all three return the current database user name. Notice, however, that the USER_NAME() function accepts a user_id as the parameter, defaulting to the current user if no parameter is passed. All these functions can also be successfully used for auditing purposes. USER_NAME can also be used to look up a database user name by its identifier.

SYSTEM_USER returns the SQL Server or Windows login name, depending on the authentication method used.

HOST_ID() and HOST_NAME() return workstation identifier and name, respectively. They also can be used to troubleshoot problems specific to a particular computer.

Data Type Validation Functions

The ISDATE and ISNUMERIC functions are similar to each other: They let you know whether the parameter passed is of a valid data type (date and time data type in case of ISDATE and numeric data type in case of ISNUMERIC). Both return a BIT value, as in the following:

SELECT

ISDATE('february 39, 2002') AS 'february 39, 2002',

 ISDATE('1/1/2002') AS '1/1/2002',

 ISNUMERIC('abc') AS 'abc',

 ISNUMERIC('123') AS '123'

Results:

	february 39, 2002
	1/1/2002
	abc
	123

	0
	1
	0
	1

Other System Functions

The CURRENT_TIMESTAMP function works exactly the same way as GETDATE(): It returns current date and time. Oddly enough, CURRENT_TIMESTAMP is classified as a system function, whereas GETDATE falls into the date and time category.

The DATALENGTH function is similar to the LEN function, which returns the length of a particular string expression. DATALENGTH returns the number of bytes used to represent an expression of any data type.

The @@TRANCOUNT function returns the number of open transactions on a particular connection. If you experience locking problems or SQL Server complains about transactions being opened, you can check the value of @@TRANCOUNT to troubleshoot such issues. @@TRANCOUNT can also be used for error handling; if @@TRANCOUNT returns anything other than 0, something must have gone wrong and you have uncommitted transactions. (Refer to my article about transactions and locking for more information on this topic.)

The @@ERROR function returns the number of the last error encountered on the current connection. If there are no errors, @@ERROR returns 0. Not surprisingly, @@ERROR is used for error handling.

The @@ROWCOUNT function returns the number of rows affected by your last query. This function can be used effectively to find out whether the number of rows modified is the same as what you intended to modify. If the two values are different, something went wrong.

The ROWCOUNT_BIG() function does the same thing as @@ROWCOUNT, but returns a BIGINT instead of an INT data type.

NOTE
It's easy to confuse the functionality of ROWCOUNT and @@ROWCOUNT. The former advises SQL Server to affect only a specified number of rows (similar to the TOP keyword); the latter simply counts the number of rows affected, as shown here:

/* first limit the output to 2 rows */

SET ROWCOUNT 2

/* this query will affect only 2 rows */

SELECT title_id, title FROM titles

/* now use functions to count the number of

affected rows */

SELECT @@ROWCOUNT AS '@@rowcount_output',

 ROWCOUNT_BIG() AS 'rowcount_big_output'

Results:

title_id title

-------- ---

PC1035 But Is It User Friendly?

PS1372 Computer Phobic AND Non-Phobic Individuals: Behavior Variations

@@rowcount_output rowcount_big_output

----------------- --------------------

2 2

The APP_NAME() function returns a string with the name of the application that initiated the database connection. APP_NAME() can be helpful if you're troubleshooting a connection and want to know which app initiated the offending process.

The rest of the system functions are limited to retrieving specific data about SQL Server. The following table provides a quick reference for what the functions do:

	System Function
	Parameters
	Used for

	STATS_DATE
	Table_id, index_id
	Determining the last time statistics were updated

	COLLATIONPROPERTY
	Collation_name, property
	Determining the value of a certain collation property

	FN_HELPCOLLATIONS
	None
	Listing supported collations

	FN_SERVERSHAREDDRIVES
	None
	Listing shared drives in clustered servers

	FN_VIRTUALFILESTATS
	Database_id, file_id
	Determining I/O stats for a certain database or log file

	FORMATMESSAGE
	Message number, parameter value
	Constructing an error message using an existing message in sysmessages table

	SERVERPROPERTY
	Property name
	Getting a property value

	SESSIONPROPERTY
	Option
	Getting a session value for various session options

	PERMISSIONS
	Object_id, column_name
	Returning a bitmap of current users' permissions

	PARSENAME
	Object_name, object_piece
	Returning server, owner, database or name portion of the specified object

System Statistical Functions

System statistical functions do not accept any parameters and always return a single value about statistics related to SQL Server operations. These functions are powerful, and they can be very helpful to database administrators for specifying a performance baseline as well as for troubleshooting various issues. System statistical functions are easy to use—all you have to do is include them in a SELECT statement, as in SELECT @@TIMETICKS.

The following table provides a summary of system statistical functions.

	System Statistical Function
	Returns

	@@CONNECTIONS
	Total number of attempted connections since SQL Server was last started

	@@CPU_BUSY
	Total number of milliseconds that the CPU has been busy since SQL Server was last started

	@@IDLE
	Total number of milliseconds that SQL Server has been idle since it was last started

	@@IO_BUSY
	Total number of milliseconds that SQL Server has spent performing I/O operations since it was last started

	@@PACKET_ERRORS
	Total number of network packet errors since SQL Server was last started

	@@PACK_RECEIVED
	Total number of network packets read since SQL Server was last started

	@@PACK_SENT
	Total number of network packets written since SQL Server was last started

	@@TIMETICKS
	Total number of microseconds per tick

	@@TOTAL_ERRORS
	Total number of disk read/write errors since SQL Server was last started

	@@TOTAL_READ
	Total number of disk reads that SQL Server performed since it was last started

	@@TOTAL_WRITE
	Total number of disk writes that SQL Server performed since it was last started

Configuration Functions

Configuration functions are very similar to system statistical functions—they also return a single value and do not accept any parameters. Unlike statistical functions, however, the value returned from some of the configuration functions can be changed by altering one of the configuration parameters by using the SET statement, executing sp_configure, or sp_dboption.

The following table summarizes the configuration functions:

	Configuration Function
	Returns

	@@DATEFIRST
	Value of SET DATEFIRST (notice that with DATEFIRST, 1 stands for Monday, 2 stands for Tuesday, and so on)

	@@DBTS
	Current value of TIMESTAMP data type within the current database

	@@LANGID
	Language id of the current language in use

	@@LANGUAGE
	Language name of the current language in use

	@@LOCK_TIMEOUT
	Lock timeout setting for current connection

	@@MAX_CONNECTIONS
	Maximum connections allowed on the current instance of SQL Server

	@@MAX_PRECISION
	Precision level used by default for NUMERIC and DECIMAL data types

	@@NESTLEVEL
	Nesting level of current procedure execution (incremented each time one stored procedure executes another)

	@@OPTIONS
	SET options for the current connection

	@@REMSERVER
	Name of the remote SQL Server from which a procedure is executed

	@@SERVERNAME
	Name of the local SQL Server

	@@SERVICENAME
	Name of the registry key under which SQL Server is running

	@@SPID
	Current server process id (spid)

	@@TEXTSIZE
	Current value of TEXSIZE option

	@@VERSION
	Date, version, and processor type for the current instance of SQL Server

Metadata Functions

Metadata functions return information about database objects. If you're familiar with the system tables and the INFORMATION_SCHEMA views, you can get most of the information available from metadata functions yourself. However, having such functions provides a nice shortcut instead of having to remember which system tables/information schema views to query each time.

The COL_LENGTH, COL_NAME, and COLUMNPROPERTY functions query syscolumns system table. These functions return column length, name, and various properties (such as whether the column allows nulls, whether the column is an identity or unique identifier, and so on). COLUMNPROPERTY can also be used to check the properties of a stored procedure parameter.
The following example returns the length of the 'qty' column in the sales table and enables us to determine whether the stor_id column allows nulls:

SELECT

 COL_LENGTH('sales', 'qty'),

 COLUMNPROPERTY(1237579447, 'stor_id', 'AllowsNULL')

Results:

------ -----------

2 0
The DB_ID(), DB_NAME(), FILE_ID(), FILE_NAME(), FILEGROUP_ID(), FILEGROUP_NAME(), OBJECT_ID(), and OBJECT_NAME() functions query sysfiles, sysfilegroups, sysobjects, or sysdatabases system tables and provide information about database objects, files and file groups.

The DB_ID() and DB_NAME() functions can be executed without any parameters; if so, they will return the ID and name of the current database. The rest of the mentioned functions require either identifier or name as a parameter. For example:

SELECT

 FILE_ID('pubs') AS pubs_file_id,

 FILE_NAME(1) AS file_name_for_file1,

 OBJECT_ID('authors') AS object_id_for_authors,

 OBJECT_NAME(1977058079) AS object_name_for_1977058079
Results:

	pubs_file_id
	file_name_for_file1
	object_id_for_authors
	object_name_for_1977058079

	1
	Pubs
	1977058079
	authors

FILEPROPERTY, FILEGROUPPROPERTY, OBJECTPROPERTY, DATABASEPROPERTY, and DATABASEPROPERTYX also query sysobjects, sysfiles, sysdatabases, and sysfilegroups system tables. However, they provide additional information, unlike the previous group of functions, which provided only ID or NAME.

There are numerous properties that can be returned by these functions: whether a database file is supposed to grow or shrink automatically, whether an object has a trigger or constraints, whether a filegroup is a default filegroup, and so on. We don't have the room to discuss each of these properties here, but feel free to check out online documentation for more information.

The SQL_VARIANT_PROPERTY() and TYPE_PROPERTY() functions are similar to the functions discussed previously. TYPE_PROPERTY returns properties of a specified data type, whereas SQL_VARIANT_PROPERTY returns properties of a column or a variable declared as SQL_VARIANT. For example:

DECLARE @variant SQL_VARIANT

SELECT @variant = 'wq3er'

SELECT SQL_VARIANT_PROPERTY(@variant, 'basetype')

Results:

varchar

The INDEX_COL, INDEXKEY_PROPERTY, and INDEXPROPERTY functions query syscolumns, sysindexes, and sysindexkeys system tables. These functions return information about indexes and columns that make up the index—index keys. For example, the following query returns the first column in the clustered index (index id = 1) on the stores table:

SELECT INDEX_COL('stores' , 1 , 1)

Results:

stor_id
The @@PROCID function returns a procedure identifier within the sysobjects table during the execution of the current procedure.

System Functions (Transact-SQL)

The following functions perform operations on and return information about values, objects, and settings in SQL Server 2005.

The Transact-SQL system functions and their determinism property are listed in the following table. For more information about function determinism, see Deterministic and Nondeterministic Functions.
	Function
	Determinism

	APP_NAME
	Nondeterministic

	CASE expression
	Deterministic

	CAST and CONVERT
	Deterministic unless used with datetime, smalldatetime, or sql_variant.

	COALESCE
	Deterministic

	COLLATIONPROPERTY
	Nondeterministic

	COLUMNS_UPDATED
	Nondeterministic

	CURRENT_TIMESTAMP
	Nondeterministic

	CURRENT_USER
	Nondeterministic

	DATALENGTH
	Deterministic

	@@ERROR
	Nondeterministic

	ERROR_LINE
	Nondeterministic

	ERROR_MESSAGE
	Nondeterministic

	ERROR_NUMBER
	Nondeterministic

	ERROR_PROCEDURE
	Nondeterministic

	ERROR_SEVERITY
	Nondeterministic

	ERROR_STATE (Transact-SQL)
	Nondeterministic

	fn_helpcollations
	Deterministic

	fn_servershareddrives
	Nondeterministic

	fn_virtualfilestats
	Nondeterministic

	FORMATMESSAGE
	Nondeterministic

	GETANSINULL
	Nondeterministic

	HOST_ID
	Nondeterministic

	HOST_NAME
	Nondeterministic

	IDENT_CURRENT
	Nondeterministic

	IDENT_INCR
	Nondeterministic

	IDENT_SEED
	Nondeterministic

	@@IDENTITY
	Nondeterministic

	IDENTITY (Function)
	Nondeterministic

	ISDATE
	Nondeterministic

	ISNULL
	Deterministic

	ISNUMERIC
	Deterministic

	NEWID
	Nondeterministic

	NULLIF
	Deterministic

	PARSENAME
	Deterministic

	ORIGINAL_LOGIN
	Nondeterministic

	@@ROWCOUNT
	Nondeterministic

	ROWCOUNT_BIG
	Nondeterministic

	SCOPE_IDENTITY
	Nondeterministic

	SERVERPROPERTY
	Nondeterministic

	SESSIONPROPERTY
	Nondeterministic

	SESSION_USER
	Nondeterministic

	STATS_DATE
	Nondeterministic

	sys.dm_db_index_physical_stats
	Nondeterministic

	SYSTEM_USER
	Nondeterministic

	@@TRANCOUNT
	Nondeterministic

	UPDATE()
	Nondeterministic

	USER_NAME
	Nondeterministic

	XACT_STATE
	Nondeterministic

